الفيزياء النوية أصبحت في هذه الأيام ضرورة للعالم المتطور ، فقد أصبحت إحدى الأس الكبرى لبناء المستقبل ، نظراً لما توفره من امكانيات جبارة وطرق سهلة للتحكم بالطاقة الكامنة ..
ولكن للأسف اشتهر عند العامة أن الفيزياء النوية ليست سوى قنابل وتدمير ،
فعندما يسمعون العامة عن كلمة (نوي) ، يعرض في أذهانهم لقطة انفجار قنبلتي هيروشيما وناجازاكي ،وصور الأطفال المشوهين في حادثة تشرنوبل ،والمصابين بالسرطان في العراق وغيرها من مآسي القوة النوية ، فالفيزياء النوية الآن أصبحت تستعمل في الكثير من حقول المعرفة ، كالطب ،والصناعات، وفي الجيولوجيا ، وفي الكمبيوتر ، وفي الإلكترونيات ،
وفي الفضاء ، وفي الآثار ، وفي التعقيم ، وفي الصناعات الكيماوية ،
وغيرها الكثير الكثير من الإستخدامات التي سنناقشها في المحاضرة التاسعة إن شاء الله ..
يظن الكثير أن فكرة الفيزياء النوية بدأت مع بداية الفيزياء الحديثة ، وهي في الحقيقة بدأت منذ أن تم اكتشاف الذرة ، ولكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة ، التي أنجبت لنا ما يسمى بالفيزياء النوية،
التي هي بدورها أنجبت طفلاً صغيراً أسميناه فيما بعد ب(فيزياء الجسيمات الأولية) .
ولكن للأسف اشتهر عند العامة أن الفيزياء النوية ليست سوى قنابل وتدمير ،
فعندما يسمعون العامة عن كلمة (نوي) ، يعرض في أذهانهم لقطة انفجار قنبلتي هيروشيما وناجازاكي ،وصور الأطفال المشوهين في حادثة تشرنوبل ،والمصابين بالسرطان في العراق وغيرها من مآسي القوة النوية ، فالفيزياء النوية الآن أصبحت تستعمل في الكثير من حقول المعرفة ، كالطب ،والصناعات، وفي الجيولوجيا ، وفي الكمبيوتر ، وفي الإلكترونيات ،
وفي الفضاء ، وفي الآثار ، وفي التعقيم ، وفي الصناعات الكيماوية ،
وغيرها الكثير الكثير من الإستخدامات التي سنناقشها في المحاضرة التاسعة إن شاء الله ..
يظن الكثير أن فكرة الفيزياء النوية بدأت مع بداية الفيزياء الحديثة ، وهي في الحقيقة بدأت منذ أن تم اكتشاف الذرة ، ولكنها بدأت تتضح أكثر مع بداية ظهور عصر الفيزياء الحديثة ، التي أنجبت لنا ما يسمى بالفيزياء النوية،
التي هي بدورها أنجبت طفلاً صغيراً أسميناه فيما بعد ب(فيزياء الجسيمات الأولية) .
ماذا تعرف عن النواة nucleus؟
النواة وهي المحور الذي تدور حوله الفيزياء النوية ،هذا الجسيم المنتاهي بالصغر ، يشكل عالم متكامل منظم من القوى عجزت عن وصفه اعظم النظريات العريقة دلت التجارب و الأبحاث على أن النواة هي عبارة عن جسيم مشحون كتلته أكبر بكثير من كتلة الإلكترونات التي هي عبارة جسيمات صغيرة تدور حول النواة بسرعة كبيرة ،
وقد أثبت التجارب على أن النواة تتكون من نوعين من الجسيمات هما : البروتونات والنيوترونات ،
ولأن هذين النوعين من الجسيمات يتشابهان بشكل كبير فيطلق عليهما لفظ (النيوكلونات)
ماهي الذرة ؟
بعد أن جاء الفيلسوفان الإغريقيان ليوسيبس وديموقريطس في القرن الخامس قبل الميلاد بفكرة أن المادة تتكون من جسيمات أولية غير قابلة للتجزئة ، خالفها الفيلسوف الشهير أرسطو وأقر أن المادة رباعية التكوين (الماء،النار،التراب،الهواء)، وسيطرت هذه الفكرة على عقول العلماء ،
وقلوب الفقراء الذين يفكرون في تحويل المواد الرخيصة إلى فضة وذهب وجواهر ، وبعد حوالي 2000 عام من ضياع الجهود والعقليات في المحاولة دون فائدة في تحويل العناصر ، قام الفيلسوف بيكون بمهاجمة آراء أرسطو في بنية المادة ، وأيد فكرة ليوسيبس وديموقريطس ،
وطلب العلماء أن يتركوا تقليد أرسطو الأعمى وأن يبحثوا في موضوع تكون المادة من ذرات ، وكان من نتيجة ذلك أن قام عالم الغازات الإيرلندي بويل بإقتراح أن الغازات تتكون من جسيمات صغيرة جداً ، وكان ادخال مفهوم الفراغ الذي أدخلتها تجارب توريشلي الإيطالي ، دعماً لبويل في أن هذه الجسيمات يوجد بينها فراغات تقل وتزداد حسب الضغط ،
ثم قام نيوتن بتوسيع هذا المفهوم ليدخل فيه السوائل والجوامد ، ثم استطاع لافوازيه الفرنسي أن يكتشف قانون حفظ المادة عن طريق التجارب المستمدة من الكيميائي بريستلي ، وأن المادة لا يمكن للإنسا أن يفنيها أو ينتجها من العدم ، وهذه القاعدة أعطت حدود للمنطقية في نظريات المادة ، ثم وفي عام 1808م طرح جون دالتون تصوره عن الذرة بأنها عبارة عن جسم مصمت كرات البيلياردو ، فلاقى ذلك موافقة من العلماء دامت ما يقارب القرن ، إلى أن تجارب فارداي في أنبوبة التفريغ الكهربائي تؤكد أن للذرة علاقة بالكهرباء،
وبأن هناك جسيمات كهربائية سالبة توجد في الذرة ، وسميت هذه الجسيمات فيما بعد بالإلكترونات، ومنذ أن بدأت الكهرباء تدخل في تكوين الذرة بدأت الشيخوخة تصيب نظرية دالتون ، وبما أنه يوجد بالذرة أجسام سالبة ، فإنها كي تتعادل الذرة ، يجب أن تكون هناك جسيمات موجبة ،فقام العالم الأمريكي ميليكان بقياس شحنة الإلكترون ، فتأكد العالم طومسون بأن جميع ذرات العناصر تحتوي على إلكترونات لها نفس الكتلة والشحنة ، وطرح في عام 1910م تصوره عن الذرة بأنها جسيم مشحون بشحنة موجبة يتواجد داخلها جسيمات سالبة ،
وأن جسيمات ألفا لاتأثر في هذه الذرات ، بل تمر مرور الكرام ، ولكن هذا التصور لم يدم طويلاً ، فتجارب جايجر ومردسن ورذرفورد عام 1911م أثبت أن عدد لا بأس به من جسيمات ألفا قد إنحرف بزوايا عالية عند مروره بذرات ثقيلة كذرات الذهب ، مما يدل على أن هناك شيء إصطدمت به جسيمات ألفا وانحرفة عن مسارها ،وهذا أثبت أن هناك جسيم عالي الكثافة موجود في داخل الذرة ، فطرح في نفس العام رذرفورد نموذجه عن الذرة وأنها تحتوي على نواة وهي جسيم مركزي تتركز فيه كتلة الذرة والشحنة الموجبة بينما تتواجد الإلكترونات على مسافات بعيدة عن النواة ، وتعمل على تنظيم ذلك الكهرومغناطيسية الكلاسيكية (القديمة) ، إلا أن هذا النموذج فشل أيضاً ، فقد كانت تفترض الكهرومغناطيسية الكلاسيكية أن أن الإلكترون عندما يبدأ بالإشعاع يقترب من النواة أكثر فأكثر فينتهي به الأمر في داخلها ، فتعادل الشحنتان ، وتختفي المادة !! ، وهذا يخالف التجربة ، وبعد قام العالم الدناماركي بوهر بمناقشة العالمين ماكس بلانك وأينشتاين في نظريتي (المكانيك الكمي) و(النظرية النسبية) استنتج على ضوء نظرياتهم في عام 1915م أن الإكترون يدور في مدارات ثابت حول النواة و عندما ينتقل من مدار لآخر يشع أو يمتص إشعاع ،كما أنه لا يستمر في إطلاق الإشعاع إلى مالا نهاية كما إفترضت الكهرومغناطيسية الكلاسيكية ، بل يشع إلى حد معين بعدها يتوقف الإشعاع ، فبعد نموذج بوهر طوى النظرية الكهرمغناطيسية الكلاسيكية النسيان ، وحقق نموذج بوهر للذرة نجاحات كبيرة ، وظل نموذجاً أساسياً لكثر من النماذج بعده
تعريف بسيط عن النظائر المشعة :
ينتشر الإشعاع في الطبيعة نتيجة لمساهمة النظائر المشعة في بناء المادة المحيطة بنا, هذا بالإضافة إلى الإشعاعات التي تفد إلينا من الفضاء الخارجي.
فما هي هذه النظائر المشعة ومن أين أت…؟
إنها ظاهرة
النشاط الإشعاعي ....
كانت هذه الظاهرة و ما ينتج عنها من إشعاعات موجودةً في الطبيعة قبل وجود الحياة على وجه الأرض بزمن طويل, بل ويعتقد أن الإشعاع كان أحد نواتج الانفجار الأعظم الذي صاحب خلق الله للكون منذ حوالي عشرين ألف مليون عام .
اكتشف ظاهرة النشاط الإشعاعي العالم الفرنسي هنري بكرل عام 1896 ثم تلته العالمة البولونية ماري كوري التي تابعت العمل في هذا الطريق ،وهي التي اشتقت التعبير " النشاط الإشعاعي Radio Activity " للدلاة على مقدرة نوى بعض الذرات على التحول التلقائي إلى نوى أخرى, يرافق هذه العملية صدور أشعة عُرِفت وحُدِدت فيما بعد .
قبل اكتشاف هذه الظاهرة كانت غالبية العناصر الموجودة في الطبيعة المكونة للجدول الدوري مثل الأوكسجين والهيدروجين والنحاس والحديد والكبريت واليورانيوم معروفة, وكان يعتقد أنها تشكل اللبنات الأساسية في بناء الوجود المادي ، وأن لكل عنصر حالة واحدة يظهر بها تحدد خواصه الكيميائية والفيزيائية وتؤهله لاحتلال خانة معينة - دون غيرها – في هذا الجدول ، لكن اكتشاف هذه الظاهرة أكد وجود أكثر من حالة فيزيائية ( نوية ) لكل عنصر من العناصر سميت هذه الحالات
" النظائر" .
والنظائر لعنصر واحد تحتل المكان نفسه في الجدول الدوري، فمثلاً....
للهيدروجين ثلاثة نظائر هي: التريتيوم والدوتيريوم والهيدروجين تقع في الخانة الأولى من الجدول الدوري, وللأكسجين سبعة.
تختلف نظائر العنصر الواحد في خواصها النوية على الرغم من تطابق خواصها الكيميائية.
من هنا جاء اهتمام علم الفيزياء النوية بالنظائر فيما يقابل اهتمام علم الكيمياء بالعناصر.
ترتبط التفاعلات الكيميائية وبالتالي الخواص الكيميائية للعناصر بإلكتروناتها بينما تتوقف الخواص النوية على تركيب النواة*.
* النواة :
هي ذلك الجزء الصغير من الذرة الذي يشغل حيزاً ( غالباً شكله كروي تقريباً ) أصغر من الجزء الذي تشغله الذرة بعشرة آلاف مرة, وتألف من جسيمات صغيرة يطلق عليها " النيكلونات " وهي على نوعين,
نوع يحمل شحنة كهربائية تدعى البروتونات وعددها يساوي عدد إلكترونات الذرة ويكتب دليل سفلي إلى أسفل يسار الرمز الكيميائي, والثاني غير مشحون - فهي إذن معتدلة كهربائياً - وتدعى النيوترونات ,
و يضاف عددها إلى عدد البروتونات ليشكلا معاً العدد الكتلي ويكتب دليل علوي إلى أعلى يسار الرمز الكيميائي, وذلك للدلاة على النظير , وقد يكتب بجوار اسم النظير
فنقول الهيدروجين 1 و الهيدروجين 2 والهيدروجين 3 , للدلاة على أي من نظائر الهيدروجين.
المعجلات النوية
Nuclear Accelerators
* ان الهدف من المعجل هو توجيه الاجسام المشحونة في شكل شعاع باكسابه طاقة حركة باتجاه الهدف من خلال تطبيق مجالات كهربية ومغناطيسية وهناك عدة انواع من هذه المعجلات.
* يتكون المعجل بصفة عامة من مصدر للجسيمات المشحونة مثل الكترونات منبعثه من فتيلة ساخنة او من ذرات متأينة حيث تنطلق هذه الجسيمات المشحونة تحت تأثير فرق جهد كهربي يتراوح من إلى 10 مليون فولت.
يتم تحديد مسار هذه الجسيمات المعجلة لتكون شعاع ينطلق باتجاه الهدف, ويكون داخل المعجل مفرغ من الهواء (تحت ضغط منخفض) لتفادي تشت الجسيمات المعجلة عند تصادمها مع ذرات الهواء.
تصنف المعجلات إلى ثلاثة اقسام بناء على الطاقة المستخدمة للتعجيل وهي على النحو التالي:
(1) المعجلات المنخفضة الطاقة: حيث تنتج جسيمات معجلة بطاقة تصل تتراوح بين 10 إلى 100 مليون الكترون فولت وفي اغلب الاحيان تستخدم هذه المعجلات لدراسة تشت الجسيمات المعجلة بتفاعلها مع مادة الهدف
(2) المعجلات ذات الطاقة المتوسطة: حيث تنتج شعاع من الجسيمات المعجلة بطاقة تفوق 100 مليون الكترون فولت لتصل 1000 مليون الكترون فولت. وعند هذه الطاقة يتم دراسة تصادم النيوكليونات مع أنوية العناصر وقد سنتج عن هذه التصادمات توليد جسيمات اخرى مثل الميونز وفي هذا المعجلات يتم دراسة القوى النوية والتحقق تركيب النواة.
(3) المعجلات ذات الطاقة العالية: وهي تنتد شعاع من الجسيمات المعجلة بطاقة تفوق 1000 مليون الكترون فولت. ويكون الغرض من هذه المعجلات هو انتاجح جسيمات جديدة من خلال اصطدام هذه الجسيمات المعجلة بأنوية العناصر ومن ثم دراسة خصائص الجسيمات الناتجة
* وقد تم تصميم معجلات نوية تصل طاقة التعجيل فيها إلى 10000000 الكترون فولت.
<DIV align=center><B>: الاجزاء الرئيسية للمعجلBDIVR
(1) مصدر الجسيمات المشحونة Ion source: وهو المصدر الرئيسي للجسيمات المعجلة ويتكون من غاز متأين بواسطة التفريغ الكهربائي ويتم استخلاص الجسيمات ذات الشحنة الموجبة من خلال الكترود سالب ذو جهد 10000 فولت.
(2) ناقل الشعاع beam optics: وهو عبارة عن عدد من الموجهات المكونة من اجهزة كهربية ومغناطيسية لتوجيه الجسيمات المعجلة في المسار المحدد لها داخل المعجل وهي بمثل العدسات في الضوء وتعتمد على قوة لورنز Lorentz force
F = q(vxB)
(3) الهدف Target: وهو المادة التي توضع في نهاية المعجل بهدف التجربة تحت الدراسة فمثلاً تجربة nuclear spectroscopy حيث يتم دراسة مستويات الطاقة ومساحة المقطع فإن الهدف في هذه الحالة يكون شريحة سمكها 10ميكرون، اما في حالة دراسة انتاج جسيمات ثانوية من تصادم الانوية المعجلة مع الهدف فإن الهدف يكون سميك يصل سمكه إلى 10 سنتميتر
بحيث يمتص طاقة الجسيمات المعجلة. وفي كلا الحالتين يتم تبريد الهدف حتي لاتغير درجة حرارته مع تصادم الجسيمات المعجلة معه.
(4) الكاشف Detector وهي الجزء الأساسي الذي تعتمد عليه القياسات المراد الحصول عليها من التجربة مثل تحديد نوعية الجسيمات الناتجة من التصادم وطاقتها وزمن بقاءها وتوزيعها الزاوي وهذه الكواشف علم قائم بحد ذاته وسنخصص مقالاً منفصلا للحديث عنها.
أنواع المعجلات
(1) المعجل الكهروستاتيكي Electrostatic accelerator
(2) معجل السيكلوترون Cyclotron accelerator
(3) المعجل الخطي Linear accelerator
(4) معجل السينكتورن Synchrotrons
(5) المعجل التصادمي Colliding-Beam accelerator
المعجل الكهروستاتيكي
ابسط انواع المعجلات التي تستخدم لتعجيل الجسيمات المشحونة خلال فرق جهد ثابت من خلال العلاقة
E = qV
حيث
v= طاقة الحركه للجسيماتBR colr=#8b0شحنة الجسيمات المعجله =qE=الطاقه التي يكتسبها الجسيم
فرق جهد التعجيل ويصل إلى 10 مليون فولت
وهذا يعني ان الطاقة التي يمكن ان يكتسبها الجسيم المعجل تصل إلى 10 مليون الكترون فولت لكل وحدة شحنة وهذه الطاقة كافية لدراسة التركيب النوي للنواة.
اول معجل تم تصميمه على هذا الاساس كان في 1932 بواسطة العالمان Cockcroft and Walton حيث وصل فرق جهد التعجيل إلى 800 الف فولت واعتمد مبدأ عمله على شحن مكثفات على التوازي ومن ثم تحويلها إلى توصيل على التوالي .
وتسمى هذه الطريقة بمضاعفة فرق الجهد voltage multiplication ةاستخدم في اول تجربة نوية في التفاعل التالي
P + 7Li º 4He+4He
وفي الوقت الحالي فإن هذا النوع من المعجلات يعتمد على مولد فانديجراف الذي طوره العالم
Van de Graaff
في عام 1932
وتعتمد فكرة عمل مولد فاندي جراف على مبادئ الكهربية الساكنة حيث نعلم ان الشحنة الكهربية تستقر على سطح الموصل في الحالة الكهروستاتيكية وتنقل الشحنة الكهربية من خلال حزام من مادة عازلة وفي اغلب الاحيان من الحرير ويحصل الحزام على الشحنة الكهربية من جهاز corona discharge وهو رأس مدب من مادة موصلة مطبق عليه فرق جهد عالي يصل الى 20 الف فولت وعند الرأس المدبة حيث تزداد كثافة الشحنة علية يحدث تفريغ كهربي يعمل على تأين الهواء فتندفع الايونات الموجبة بقوة التنافر في اتجاه الحزام المتحرك حاملاً شحنة موجبة إلى القشرة الكروية التي تشكل مكثف كهربي من مع الأرض.
وهذه فكرة عمل هذا المولد فعندما يتم شحن الموصل الداخلي تنتقل الشحنة إلى القشرة الكروية المتصلة مع الموصل الداخلي كما في الشكل وتستقر الشحنة على السطح الخارجي للقشرة وتعتمد قيمة الشحنة على العلاقة
V = Q/C
حيث C سعة المكثف وQ الشحنةو V فرق الجهد الناتج ومن الناحية النظرية فإنه يمكن ان يزداد الجهد الكهربي إلى مالانهاية لان سعة المكثف لانهائية وكلما ازادادت قيمة الشحنة ازدادت قيمة الجهد ولكن من الناحية العملية فإن قيمة عالة للجهد الكهربي يوئدي إلى تأين الهواء ويصبح موصل مما يؤدي إلى وضع حد لزيادة فرق الجهد الكهربي الممكن الحصول عليه. وللتغلب على هذه المشكلة يتم وضع مولد الفانديجراف في حاوية تحتوي على غاز عازل كهربيا مثل غاز SF6 عند ضغط 10 إلى 20 ضغط جوي
* يمتاز مولد فانديجراف عن مولد والتن كوكفورت باثبات قيمة فرق الجهد وهذه مهمة جداً في دراسة مساحة مقطع التصادمات النوية لدراسة مستويات الطاقة النوية.
تمتلك العديد من الجامعات الامريكية والمراكز البحثية مولد الفانديجراف وفي الصورة التالية نلاحظ مختبر مجهز بمولد فاندجراف
من المولدات المتطورة المعتمدة على مولد فانديجراف مولد تاندم فانديجراف Tandem Van de Graaff
ويمكن الحصول على فرق جهد 20 مليون فولت ويستخدم هذا المعجل في دراسة تفاعل الأيونات الثقيلة. ونلاحظ على يسار الصورة المغناطيس الذي يعمل على حرف الجسيمات المعجلة وكذلك المغناطيس الذي يعمل على توجيه الجسيمات إلى عدة مسارات مختلفة لكل مسار يخصص تجربة محددة.
معجل السكلترون
جهاز السنكلترون يعد جهاز حديث تم تصميمه في 1934 ويستخدم في تعجيل الجسيمات المشحونة إلى سرعات هائلة تستخدم في تجارب التصادمات النوية. وهنا ايضا يستخدم كلا من المجال الكهربي والمجال المغناطيسي لهذا الغرض.
فكرة العمل
يتكون السنكلترون من وعائين منفصلين على شكل الحرف الانجليزي D مفرغين من الهواء لتقليل احتكاك الجسيمات المعجلة مع جزيئات الهواء. يطبق فرق جهد متردد على طرفي الوعائين ويطبق مجال مغناطيسي عمودي على الوعائين .
يتم اطلاق الجسيمات المراد تعجيلها في وسط المنطقة الفاصلة بين الوعائين لتأخذ مسار دائري وتعود إلى الوسط الفاصل في فترة زمنية قدرها T/2 حيث T هو الزمن الدوي.
وبضبط تردد فرق الجهد المطبق بين الوعائين لقلب قطبيتهما ليتوافق مع وصول الجسم المشحون للمنطقة الفاصلة حيث يكون مجالا كهربياً يكسب الشحنة دفعة لتزيد من سرعته وبالتالي يزداد نصف قطر الدوران للجسم المشحون تدريجياً حتى يصل إلى نصف قطر الوعاء وعندها يخرج الجسيم المشحون من المعجل (السنكلترون) بسرعة كبيرة تعتمد على المعادلة
v = qBr/m
وهذا يعني ان سرعة الجسيمات المعجلة تتناسب طرديا مع المجال المغناطيسي المطبق وعلى نصف القطر.
اول معجل تم تصنيعه على هذا الاساس بواسطة Lawrence and Livingston في بيركلي بالولايات المتحدة في 1931 وكان نصف قطره 12.5 سم والمجال المغناطيسي 1.3 تسلا وهذا انتج بروتونات معجلة بطاقة 1.2 مليون الكترون فولت. وبعد عدة سنوات تم تطوير معجل السنكلترون ليصل نصف قطره إلى 35 سم وطاقة تعجيل البروتونات تصل إلى 10 مليون الكترون فولت. وفي نهاية 1930 تم بناء معجل سنكلترون نصف قطره 75 سم وطاقة تعجيل البروتونات تصل إلى 20 مليون الكترون فولت.
المعجل الخطي
يدعى هذا المعجل باسم ليناك Linac وفيه يتم تعجيل الجسيمات المشحونة على مراحل بواسطة فرق جهد متردد كما في السينكلترون ولكن الفرق ان مسار الجسيمات المشحونة يكون في خط مستقيم حيث لا نحتاج الى المغناطيس الباهظ التكلفة. يتكون المعجل الخطي كما في الشكل التوضيحي التالي من عدة سلسلة من الالكترود ذات الشكل الاسطواني والتي ترتبط بعضها البعض من خلال مصدر فرق جهد متردد.
تكتسب الجسيمات المعجلة طاقتها من الفجوة بين الاسطوانات نتيجة لفرق الجهد المطبق عليها وفي داخل الاسطوانة حيث لا يوجد مجال تندفع الجسيمات تحت تأثير قوة اندفاعها لفترة من الزمن تساوي نصف الزمن الدوري لفرق الجهد المتردد لحين تغير قطبية فرق الحهد المطبق على الاسطوانة التي تليها.
وتعتمد فكرة عمل المعجل الخطي على التزامن بين الطاقة التي يكتسبها الجسيم المشحون بين الاسطوانات مع المجال الكهربي المتردد المطبق على الاسطوانات ولضبط هذا التزامن فإن طول الاسطوانة يصمم بناء على سرعة الجسيمات المعجلة بعد كل مرحلة، فإذا كان نصف الزمن الدوري للجهد المطبق هو t/2 فإن طول الاسطوانة رقم n يعكى بالمعادلة
Ln = vnt/2
وطاقة الحركة المكتسبة بعد مرورها من الاسطوانة رقم n يعطى بالعلاقة
1/2 mvn2 = neVo
ومن المعادلتين السابقتين يكون طول الاسطوانة n
عند خروج الجسيمات المعجلة من الاسطوانة تتعرض إلى مجال كهربي
مثال على المعجل الخطي هو المعجل الموجود في جامعة ستانفورد في الولايات المتحدة والذي انتج في 1967 ضمن برنامج ابحاث فيزياء الطاقة العالية وهذا المعجل يعطي الالكترونات المعجلة طاقة تصل إلى 1.2 جيجا الكترون فولت 1.2x109 eV والتجارب التي عملت بواسطة هذا المعجل على تشت الالكترونات المعجلة لتحديد نصف قطر النواة.
معجل خطي في Los Alamos Meson Physics Laboratory يبلغ طوله نصف ميل
المعجل التصادمي
يستخدم المعجل التصادمي في مجال الفيزياء النوية ذات الطاقة العالية لانتاج جسيمات جديدة من خلال تحويل اكبر قدر ممكن من طاقة حركة الجسيمات المعحلة إلى طاقة تكوبن (كتلة) لجسيمات جديدة. افترض شعاع من جسيمات مثل البروتونات تم تعجيلها لتصطدم بهدف من ذرات الهيدروجين لتنتح جسيمات جديدة X كما في المعادلة التالية:
P + P º P + P + X
يجب ان تكون طاقة الحركة اكبر من طاقة تكوين الجسيمات المنتجة ولحساب طاقة الحركة المطلوية
يتم اطلاق الجسيمات المراد تعجيلها في وسط المنطقة الفاصلة بين الوعائين لتأخذ مسار دائري وتعود إلى الوسط الفاصل في فترة زمنية قدرها T/2 حيث T هو الزمن الدوي.
وبضبط تردد فرق الجهد المطبق بين الوعائين لقلب قطبيتهما ليتوافق مع وصول الجسم المشحون للمنطقة الفاصلة حيث يكون مجالا كهربياً يكسب الشحنة دفعة لتزيد من سرعته وبالتالي يزداد نصف قطر الدوران للجسم المشحون تدريجياً حتى يصل إلى نصف قطر الوعاء وعندها يخرج الجسيم المشحون من المعجل (السنكلترون) بسرعة كبيرة تعتمد على المعادلة
v = qBr/m
وهذا يعني ان سرعة الجسيمات المعجلة تتناسب طرديا مع المجال المغناطيسي المطبق وعلى نصف القطر.
اول معجل تم تصنيعه على هذا الاساس بواسطة Lawrence and Livingston في بيركلي بالولايات المتحدة في 1931 وكان نصف قطره 12.5 سم والمجال المغناطيسي 1.3 تسلا وهذا انتج بروتونات معجلة بطاقة 1.2 مليون الكترون فولت. وبعد عدة سنوات تم تطوير معجل السنكلترون ليصل نصف قطره إلى 35 سم وطاقة تعجيل البروتونات تصل إلى 10 مليون الكترون فولت. وفي نهاية 1930 تم بناء معجل سنكلترون نصف قطره 75 سم وطاقة تعجيل البروتونات تصل إلى 20 مليون الكترون فولت.
المعجل الخطي
يدعى هذا المعجل باسم ليناك Linac وفيه يتم تعجيل الجسيمات المشحونة على مراحل بواسطة فرق جهد متردد كما في السينكلترون ولكن الفرق ان مسار الجسيمات المشحونة يكون في خط مستقيم حيث لا نحتاج الى المغناطيس الباهظ التكلفة. يتكون المعجل الخطي كما في الشكل التوضيحي التالي من عدة سلسلة من الالكترود ذات الشكل الاسطواني والتي ترتبط بعضها البعض من خلال مصدر فرق جهد متردد.
تكتسب الجسيمات المعجلة طاقتها من الفجوة بين الاسطوانات نتيجة لفرق الجهد المطبق عليها وفي داخل الاسطوانة حيث لا يوجد مجال تندفع الجسيمات تحت تأثير قوة اندفاعها لفترة من الزمن تساوي نصف الزمن الدوري لفرق الجهد المتردد لحين تغير قطبية فرق الحهد المطبق على الاسطوانة التي تليها.
وتعتمد فكرة عمل المعجل الخطي على التزامن بين الطاقة التي يكتسبها الجسيم المشحون بين الاسطوانات مع المجال الكهربي المتردد المطبق على الاسطوانات ولضبط هذا التزامن فإن طول الاسطوانة يصمم بناء على سرعة الجسيمات المعجلة بعد كل مرحلة، فإذا كان نصف الزمن الدوري للجهد المطبق هو t/2 فإن طول الاسطوانة رقم n يعكى بالمعادلة
Ln = vnt/2
وطاقة الحركة المكتسبة بعد مرورها من الاسطوانة رقم n يعطى بالعلاقة
1/2 mvn2 = neVo
ومن المعادلتين السابقتين يكون طول الاسطوانة n
عند خروج الجسيمات المعجلة من الاسطوانة تتعرض إلى مجال كهربي
مثال على المعجل الخطي هو المعجل الموجود في جامعة ستانفورد في الولايات المتحدة والذي انتج في 1967 ضمن برنامج ابحاث فيزياء الطاقة العالية وهذا المعجل يعطي الالكترونات المعجلة طاقة تصل إلى 1.2 جيجا الكترون فولت 1.2x109 eV والتجارب التي عملت بواسطة هذا المعجل على تشت الالكترونات المعجلة لتحديد نصف قطر النواة.
معجل خطي في Los Alamos Meson Physics Laboratory يبلغ طوله نصف ميل
المعجل التصادمي
يستخدم المعجل التصادمي في مجال الفيزياء النوية ذات الطاقة العالية لانتاج جسيمات جديدة من خلال تحويل اكبر قدر ممكن من طاقة حركة الجسيمات المعحلة إلى طاقة تكوبن (كتلة) لجسيمات جديدة. افترض شعاع من جسيمات مثل البروتونات تم تعجيلها لتصطدم بهدف من ذرات الهيدروجين لتنتح جسيمات جديدة X كما في المعادلة التالية:
P + P º P + P + X
يجب ان تكون طاقة الحركة اكبر من طاقة تكوين الجسيمات المنتجة ولحساب طاقة الحركة المطلوية
ليست هناك تعليقات:
إرسال تعليق